
Making Higher-Order Superposition Work

Petar Vukmirović1 , Alexander Bentkamp1 , Jasmin Blanchette1,2,3 ,
Simon Cruanes4 , Visa Nummelin1 , and Sophie Tourret2,3

1 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
{p.vukmirovic,a.bentkamp,j.c.blanchette,visa.nummelin}@vu.nl

2 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
sophie.tourret@inria.fr

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
4 Aesthetic Integration, Austin, Texas, USA

simon@imandra.ai

Abstract. Superposition is among the most successful calculi for first-
order logic. Its extension to higher-order logic introduces new challenges
such as infinitely branching inference rules, new possibilities such as re-
asoning with formulas, and the need to curb the explosion of specific
higher-order rules. We describe techniques that address these issues and
extensively evaluate their implementation in the Zipperposition theorem
prover. Largely thanks to their use, Zipperposition won the higher-order
division of the CASC-J10 competition.

1 Introduction

In recent decades, superposition-based first-order automatic theorem provers
have emerged as useful reasoning tools. They dominate at the annual CASC [47]
theorem prover competitions, having always won the first-order theorem divi-
sion. They are also used as backends to proof assistants [14, 26, 37], automatic
higher-order theorem provers [44], and software verifiers [18]. The superposi-
tion calculus has only recently been extended to higher-order logic, resulting
in λ-superposition [5], which we developed together with Waldmann, as well as
combinatory superposition [10] by Bhayat and Reger.

Both of these higher-order superposition calculi were designed to gracefully
extend first-order reasoning. As it is expected that most steps in higher-order
proofs are essentially first-order, extending the most successful first-order calcu-
lus to higher-order logic seemed like a good strategy to improve the state of the
art. Our first attempt at corroborating this conjecture was in 2019: Zipperposi-
tion 1.5, based on λ-superposition, finished third in the higher-order theorem
division of CASC-27 [49], 12 percentage points behind the winner, the tableau
prover Satallax 3.4 [12].

Investigating the competition results, we discovered that higher-order ta-
bleaux have some advantages over higher-order superposition. To mitigate these,
we developed techniques and heuristics to simulate the behavior of a tableau pro-
ver in a saturating prover. We implemented them in Zipperposition 2, which took

http://orcid.org/0000-0001-7049-6847
http://orcid.org/0000-0002-7158-3595
http://orcid.org/0000-0002-8367-0936
http://orcid.org/0000-0003-3969-5850
http://orcid.org/0000-0003-0078-790X
http://orcid.org/0000-0002-6070-796X


2 P. Vukmirović et al.

part in CASC-J10 in 2020. This time, Zipperposition won the division, solving
84% of problems, a whole 20 percentage points ahead of the next best prover,
Satallax 3.4. In this paper, we describe the main techniques that explain this
reversal of fortunes. They range from preprocessing to backend integration.

Interesting patterns can be observed in various higher-order encodings of
problems. We show how we can exploit these to simplify problems (Sect. 3). By
working on formulas rather than clauses, tableau techniques take a more holistic
view of a higher-order problem. Delaying the clausification through the use of
calculus rules that act on formulas achieves the same effect in superposition. We
further explore the benefits of this approach (Sect. 4).

The main drawback of λ-superposition compared with combinatory superpo-
sition is that it relies on rules that enumerate possibly infinite sets of unifiers. We
describe a mechanism that interleaves performing infinitely branching inferences
with the standard saturation process (Sect. 5). It allows the prover to retain the
same behavior as before on first-order problems, smoothly scaling with increa-
sing numbers of higher-order clauses. We also propose some heuristics to curb
the explosion induced by highly prolific λ-superposition rules (Sect. 6).

Using first-order backends to finish the proof attempt is common practice in
higher-order reasoning. Since λ-superposition behaves like regular superposition
on the first-order part of the problem, invoking backends may seem redundant;
yet Zipperposition is nowhere as efficient as E [40] or Vampire [29], so invoking
a more efficient backend does make sense. We describe how to achieve a balance
between allowing the higher-order calculus to do native reasoning and delegating
reasoning to a backend (Sect. 7).

We also compare Zipperposition 2 with other provers on all monomorphic
higher-order TPTP benchmarks [48] to perform a more extensive evaluation
than at CASC (Sect. 8). Our evaluation corroborates the competition results.

2 Background and Setting

We focus on monomorphic higher-order logic, but the techniques can be extended
with polymorphism. Indeed, implementation of some techniques is polymorphic.

Higher-Order Logic. We define terms inductively as free variables F,G,X, Y ,
bound variables x, y, z, constants f, g, a, b, . . . , applications s t, or λ-abstractions
λx.s, where s and t are terms. The syntactic distinction between free and bound
variables gives rise to loose bound variables (e.g., y in λx. y a) [33]. We write s tn
to denote s t1 · · · tn and λxn. s for λx1. · · · λxn. s. Every β-normal term can be
written as λxm. s tn, where s is not an application; we call s the head of the
term. If s is a variable of a type of the form τ1 → · · · → τn → o, where o is the
distinguished Boolean type and n ≥ 0, we call s a predicate variable. A literal l is
an equation s ≈ t or a disequation s 6≈ t. A clause is a finite multiset of literals,
interpreted and written disjunctively l1 ∨ · · · ∨ ln. Term-building logical symbols
are written in boldface: ¬¬¬,∧∧∧,∨∨∨,→→→,↔↔↔, . . . Nonequational (predicate) literals are
encoded as (dis)equations with >>> based on their sign: For example, even(x)
becomes even(x) ≈>>>, and ¬ even(x) becomes even(x) 6≈ >>>.



Making Higher-Order Superposition Work 3

Higher-Order Calculi. The λ-superposition calculus is a refutationally com-
plete inference system and redundancy criterion for Boolean-free extensional
polymorphic clausal higher-order logic. A pragmatic, incomplete extension of
this calculus with Booleans is described by Vukmirović and Nummelin [54]. The
λ-superposition calculus relies on complete sets of unifiers (CSUs). The CSU for
s and t, with respect to a set of variables V , denoted by CSUV (s, t), is a set of
unifiers such that for any unifier % of s and t, there exists a σ ∈ CSUV (s, t) and
θ such that %(X) = σ(θ(X)) for all X ∈ V . The set X is used to distinguish
between important and auxiliary variables. We can normally leave it implicit.

By contrast, the combinatory superposition calculus avoids CSUs by using a
form of first-order unification, but it essentially enumerates higher-order terms
using rules that instantiate applied variables with partially applied combinators
from the complete combinator set {S,K,B,C, I}. This calculus is the basis of
Vampire 4.5 [10], which finished closely behind Satallax 3.4 at CASC-J10.

A different, very successful calculus is Satallax’s SAT-guided tableaux [2].
Satallax was the leading higher-order prover of the 2010s. Its simple and elegant
tableaux avoid deep superposition-style rewriting inferences. Nevertheless, our
working hypothesis for the past six years has been that superposition would li-
kely provide a stronger basis for higher-order reasoning. Other competing higher-
order calculi include SMT (implemented in CVC4 [3, 4]) and extensional para-
modulation (implemented in Leo-III [44]).

Zipperposition. Zipperposition [5, 13] is a higher-order theorem prover based
on a pragmatic extension of λ-superposition. It was conceived as a testbed for
rapidly experimenting with extensions of first-order superposition, but over time,
it has assimilated most of the techniques and heuristics of the E prover [40].
Zipperposition 2 also implements combinatory superposition.

Several of our techniques extend the given clause procedure [31, Section 2.3],
the standard saturation procedure. It partitions the proof state into a set P
of passive clauses and a set A of active clauses. Initially, P contains all input
clauses, and A is empty. At each iteration, a given clause C from P is moved to
A (i.e., it is activated), all inferences between C and clauses in A are performed,
and the conclusions are added to P . As Zipperposition fully simplifies clauses
only when they are activated, it implements DISCOUNT-style loop [15].

Experimental Setup. To assess our techniques, we carried out experiments
with Zipperposition 2. For uniformity (as some techniques are implemented mo-
nomorphically), we used all 2606 monomorphic higher-order problems from the
TPTP library [48], version 7.2.0, as benchmarks. We fixed a base configuration
of Zipperposition parameters as a baseline for all comparisons. Then, in each
experiment, we varied the parameters associated with a specific technique to
evaluate it. The experiments were run on StarExec [45] servers, equipped with
Intel Xeon E5-2609 CPUs clocked at 2.40 GHz. Unless otherwise stated, we used
a CPU time limit of 20 s, roughly the time each configuration is given in the
portfolio mode used for CASC. The raw evaluation results are available online.5

5 https://doi.org/10.5281/zenodo.4534829

https://doi.org/10.5281/zenodo.4534829


4 P. Vukmirović et al.

3 Preprocessing Higher-Order Problems

The TPTP library contains thousands of higher-order problems. Despite their
diversity, they have a markedly different flavor from the TPTP first-order pro-
blems. Notably, they extensively use the definition role to identify universally
quantified equations (or equivalences) that define symbols.

An effective way to deal with definitions is to turn them into rewrite rules,
using the orientation given in the input problem. If there are multiple definitions
for the same symbol, only the first one is used as a rewrite rule. Then, whenever
a clause is picked in the given clause procedure, it will be rewritten using the
collected rules. Since the TPTP format enforces no constraints on definitions,
this rewriting might not terminate. To ensure termination, we limit the number
of applied rewrite steps. In practice, most TPTP problems are well behaved:
Only one definition per symbol is given, and the definitions are acyclic. Instead
of rewriting a clause when it is activated, we can rewrite the input formulas
as a preprocessing step. This has the advantage that input clauses will be fully
simplified when the proving process starts, and no defined symbols will occur in
clauses, which usually helps the heuristics.

Eagerly unfolding the definitions and β-reducing can eliminate all higher-
order features of a problem, making it amendable to first-order methods; ho-
wever, it compromises the refutational completeness of the superposition calculi
and it can also inflate the problem beyond recognition.

Thus, it is sometimes preferable to orient the definitions using the term order
which is the parameter of the superposition calculus, and rely on demodulation
to simplify the proof state. Typically, the Knuth–Bendix order (KBO) [27] is
used. It compares terms by first comparing their weights, which is the sum of
all the weights assigned to the symbols it contains. To recover completeness, we
do the following. Given a symbol weight assignment W, we can update it so
that it orients acyclic definitions from left to right assuming that they are of the
form fXm ≈ λyn. t, where the only free variables in t are Xm, no free variable
repeats or appears applied in t, and f does not occur in t. Then we traverse the
symbols f that are defined by such equations following the dependency relation,
starting with a symbol f that does not depend on any other defined symbol. For
each f, we set W(f) to w+ 1, where w is the maximum weight of the right-hand
sides of f’s definitions, computed using W. By construction, for each equation
the left-hand side is heavier, thereby orienting the equation left-to-right .

Evaluation and Discussion. Configuration base treats axioms annotated with
definition as rewrite rules, and it preprocesses the formulas using the rewrite
rules. We also tested the effects of disabling this preprocessing (−preprocess),
disabling the special treatment of definition axioms (−RW), and disabling the
special treatment of definition while using adjusted KBO weights as described
above (−RW+KBO). The results are given in Figure 1. In all of the figures in this
paper, each cell gives the number of proved problems; the highest number is type-
set in bold. Clearly, treating definition axioms as rewrite rules greatly improves



Making Higher-Order Superposition Work 5

base −preprocess −RW −RW+KBO

1638 1627 1303 1324

Fig. 1: Effect of the rewrite methods

+LA −LA

IC 1624 1638

DCI 1496 1531

DCS 1659 1710

Fig. 2: Effect of clausification
and lightweight AVATAR

performance. Using adjusted KBO weights is not as strong, but raw evaluation
data reveals that it yields 15 solutions not found using other configurations.

4 Reasoning with Formulas

Higher-order logic identifies terms and formulas. In many cases, we can easily
solve a problem by instantiating a predicate variable with the right formula. Fin-
ding this formula is usually easier if the problem is not clausified. Consider the
conjecture ∃f. f p q↔↔↔ p∧∧∧q. Expressed in this form, the formula is easy to prove
by taking f := λx y. x∧∧∧ y. By contrast, guessing the right instantiation for the
negated, clausified form F p q 6≈ >>> ∨ p 6≈ >>> ∨ q 6≈ >>>, F p q ≈>>> ∨ p ≈>>>, F p q ≈
>>> ∨ q ≈>>> is more challenging. One of the strengths of higher-order tableau pro-
vers is that they do not clausify the input problem. This might explain Satallax’s
dominance in the THF division of CASC competitions until CASC-J10.

We studied techniques to incrementally clausify formulas during proof search
in ad hoc [54] and complete [6] extensions of λ-superposition. Both approaches
include the same set of (outer) delayed clausification rules that clausify top-level
logical symbols, proceeding outside in; for example, a clause C ′ ∨ (p ∧∧∧ q) 6≈ >>>
yields C ′ ∨ p 6≈ >>> ∨ q 6≈ >>>. For completeness, the latter approach requires
additional inference rules; it also supports inner delayed clausification. We focus
only on the ad hoc approach and do not consider inner clausification, due to its
poor performance.

Delayed clausification rules can be used as inference rules (which add conclu-
sions to the passive set) or as simplification rules (which delete premises and add
conclusions to the passive set). Inferences are more flexible as they produce all
intermediate clausification states, whereas simplifications produce fewer clauses.
Since clausifying equivalences can destroy a lot of syntactic structure [19], we
never apply simplifying clausification rules on them.

We discuss two tableaux-inspired approaches for reasoning with formulas.
First, we study how clause-splitting techniques interfere with delayed clausifica-
tion. Second, we discuss heuristic instantiation of quantifiers during saturation.

Zipperposition supports a lightweight variant of AVATAR [51], an architec-
ture that partitions the search space by splitting clauses into variable-disjoint
subclauses. This variant of AVATAR is described in detail by Ebner et al. [16].
Combining lightweight AVATAR and delayed clausification makes it possible to



6 P. Vukmirović et al.

split a clause (ϕ1 ∨∨∨ · · · ∨∨∨ ϕn) ≈ >>>, where ϕi are arbitrarily complex formulas
that mutually share no free variables, into clauses ϕi ≈>>>.

To finish the proof, it suffices to derive ⊥ under each assumption ϕi ≈>>>. As
the split is performed at the formula level, this technique resembles tableaux,
but it exploits the strengths of superposition, such as its powerful redundancy
criterion and simplification machinery, to close the branches.

Interleaving clausification with saturation allows us to simulate some ta-
bleaux techniques. In particular, whenever dynamic clausification replaces the
predicate variable x in a clause of the form (∀∀∀x. ϕ) ≈>>> ∨ C with a fresh variable
X, resulting in ϕ{x 7→ X} ≈ >>> ∨ C, we can create additional clauses in which
x is replaced with t ∈ Inst , where Inst is a set of heuristically chosen terms.
This set contains λ-abstractions whose bodies are formulas and which occur in
activated clauses, and primitive instantiations [54]—that is, imitations (in the
sense of higher-order unification) of logical symbols that approximate the shape
of a formula that can instantiate a predicate variable.

However, as a new term t can be added to Inst after a clause with a quantified
variable of the same type as t has been activated, we must also keep track of
the clauses ϕ{x 7→ X} ≈ >>> ∨ C, so that when Inst is extended, we instantiate
the saved clauses. Conveniently, instantiated clauses are not subsumed, since
Zipperposition uses an optimized but incomplete subsumption algorithm.

Given a disequation f sn 6≈ f tn, the abstraction of si is λx. u≈≈≈ v, where u is
obtained by replacing si by x in f sn and v is obtained analogously from f tn (if
si occurs in f tn). For f sn ≈ f tn, the analogous abstraction is λx.¬¬¬ (u≈≈≈ v).

Adding abstractions of the literals in the conjecture to Inst can provide use-
ful instantiations for formulas such as induction principles for datatypes. As the
conjecture is negated in refutational theorem proving, polarity of the equation is
inverted in the abstraction. Consider the TPTP problem DAT056^2 [46], whose
clausified conjecture is ap xs (ap ys zs) 6≈ ap (ap xs ys) zs, where ap is the list ap-
pend operator defined recursively on its first argument and xs, ys, and zs are of
list type. Abstraction of xs from the disequation yields t = λx. apx (ap ys zs) ≈≈≈
ap (apx ys) zs, which is inserted into Inst . One of the axioms in the problem is the
induction axiom for the list datatype: ∀∀∀p. (p nil∧∧∧ (∀∀∀x xs. p xs →→→ p (consx xs)))→→→
∀∀∀xs. p xs, where nil and cons have the usual meanings. Instantiating p in this ax-
iom with t, and the equations defining ap allow us to prove ∀∀∀x. apx (ap ys zs) ≈≈≈
ap (apx ys) zs, from which we can easily derive a contradiction.

Evaluation and Discussion. The base configuration uses immediate clausi-
fication (IC), an approach that applies a standard clausification algorithm [35]
both as a preprocessing step and after instantiating predicate variables. Zipper-
position supports only a lightweight version of AVATAR [51], which is disabled
in the base configuration. To test the merits of delayed clausification, we vary
base’s parameters along two axes: We choose immediate clausification (IC), de-
layed clausification as inference (DCI), or delayed clausification as simplification
(DCS), and we either enable (+LA) or disable (−LA) the lightweight AVATAR.
The base configuration does not use Boolean instantiation.



Making Higher-Order Superposition Work 7

Figure 2 shows that using delayed clausification as simplification greatly in-
creases the success rate, while using delayed clausification as inference has the
opposite effect. Manually inspecting the proofs found by the DCS configuration,
we noticed that a main reason for its success was that it does not simplify away
equivalences. Overall, the lightweight AVATAR harms performance, but the sets
of problems solved with and without it are vastly different. For example, the
IC+LA configuration solves 60 problems not solved by IC−LA.

The Boolean instantiation technique described above is applicable only when
delayed clausification is enabled. To test its effects, we enabled it in the best
configuration from Figure 2, DCS−LA. With this change, Zipperposition solves
1744 problems, with 36 unique solutions with respect to other configurations in
Figure 2. Boolean instantiation is the only way Zipperposition 2 can solve higher-
order problems requiring reasoning with induction axioms such as DAT056^2.

5 Enumerating Infinitely Branching Inferences

As an optimization and to simplify the implementation, Leo-III [42] and Vampire
4.4 [9] (which does not use combinatory superposition) compute only a finite
subset of conclusions of inferences that require enumerating a CSU. Not only is
this a source of incompleteness, but choosing the cardinality of the computed
subset is a difficult heuristic choice. Small sets possibly lead to missing the unifier
necessary for the proof, whereas large sets make the prover spend a long time
in the unification procedure, generate useless clauses, and possibly get bogged
down in the wrong parts of the search space.

We propose a modification to the given clause procedure to seamlessly interle-
ave unifier computation and proof state exploration. Given a complete unification
procedure, which may yield infinite streams of unifiers, our modification fairly
enumerates all conclusions of inferences relying on elements of a CSU. Under
some reasonable assumptions, it behaves exactly like the standard given clause
procedure on purely first-order problems. We also describe heuristics that help
achieve a similar performance as when using incomplete, terminating unification
procedures without sacrificing completeness.

Given that it is undecidable whether there is a next CSU element in a stream
of unifiers, the request for the next conclusion might not terminate, effectively
bringing the theorem prover to a halt. Our modified given clause procedure ex-
pects the unification procedure to return a lazily computed stream [36, Sect. 4.2],
each element of which is either ∅ or a singleton set containing a unifier. To avoid
getting stuck waiting for a unifier that may not exist, the unification procedure
should return ∅ after it performs a number of operations without finding a unifier.

The complete unification procedure by Vukmirović et al. [52] returns such a
stream. Other procedures such as Huet’s [23] and Jensen and Pietrzykowski’s [24]
can easily be adapted to meet this requirement. Based on the stream of unifiers
interspersed with ∅, we can construct a stream of inferences similarly interspersed
with ∅ of which any finite prefixes can be computed in finite time.



8 P. Vukmirović et al.

To support such streams in the given clause procedure, we extend it to re-
present the proof state not only by the active (A) and passive (P ) clause sets,
but also by the priority queue Q containing the inference streams. Elsewhere [5]
Bentkamp et al. briefly described an older version of this extension. Here we pre-
sent a newer version in more detail, including heuristics to postpone unpromising
streams. The pseudocode of the modified procedure is given in Figure 3.

Initially, all input clauses are put into P , and A and Q are empty. Unlike
the standard given clause procedure, we represent inference results as clause
streams. Only the first element of the stream is inserted into P , and the rest of
the stream is stored in Q with some initial positive integer penalty p.

The functions Probe and ForceProbe extract some conclusions from the
inference streams and store them in P . Probe heuristically chooses some clauses,
whereas ForceProbe is used when P is empty to find one clause if previous
probes failed to produce any clauses, as a fallback. By choosing clauses from
several streams at the same time, we give more freedom to the prover’s existing
clause selection heuristics, which select a clause from P .

Probe has two modes of operation, controlled by a parameter m (by default,
m = 70). In every mth invocation, Probe extracts conclusions from an incre-
asing number of oldest streams. This amounts to dovetailing, which achieves
fairness, analogously to pick-given ratio [31,39] in the given clause procedure. In
the remaining invocations, Probe selects the n highest-priority streams (by de-
fault, n = 10) and extracts elements from each stream—or probes each stream—
discarding ∅ values, until a clause is found or until k (by default, k = 20) ∅ values
have been discarded. Setting k > 1 ensures that promising streams are given a
reasonable chance to produce a clause, even if they rely on a complicated unifier.
Finally, each probed stream S is put back to Q with a new priority, based on
the number of times S was probed and wheter it produced a clause.

The Probe and ForceProbe functions are invoked by GivenClause,
which forms the body of the saturation loop. Compared with the standard given
clause procedure, the differences are as follows: First, the proof state also inclu-
des Q in addition to P and A. Second, new inferences involving the given clause
are added to Q instead of being performed immediately. Third, inferences in Q
are periodically performed lazily to fill P .

The GivenClause function eagerly stores the first element of a new infe-
rence stream in P to imitate the standard given clause procedure. If the un-
derlying unification procedure behaves like the standard first-order unification
algorithm on the first-order fragment of higher-order logic, our given clause pro-
cedure coincides with the standard one. For example, the unification procedure
by Vukmirović et al. terminates on the first-order and other fragments [34]. Mo-
reover, for problems outside these fragments, it immediately returns ∅ to avoid
computing complicated unifiers eagerly.

Evaluation and Discussion. When the unification procedure of Vukmirović
et al. was implemented in Zipperposition, it was observed that Zipperposition is
the only competing higher-order prover that solves all Church numeral problems
from the TPTP, never spending more than 5 seconds on the problem [52].



Making Higher-Order Superposition Work 9

function Probe(Q, i)
if i mod m = 0 then Chosen ← pop bi/mc oldest streams from Q
else Chosen ← pop n highest-priority streams from Q

Collected ← ∅
for S in Chosen do

num probes ← 0
Concl ← ∅
while num probes < k and Concl = ∅ do

Concl ← pop and compute the first element of stream S
num probes ← num probes+ 1

Collected ← Collected ∪ Concl
if S is not empty then

add S to Q with updated priority
return Collected

function ForceProbe(Q)
Concl ← ∅
while Q is not empty and Concl = ∅ do

streams ← pop all streams stored in Q
while streams is not empty and Concl = ∅ do

S ← pop the first element of streams
Concl ← pop and compute the first element of stream S
if S is not empty then

Add S to Q with updated priority

put all remaining S ∈ streams to Q

if Q and Concl are empty then return (Satisfiable, Concl)
else return (Unknown, Concl)

function GivenClause(P , A, Q)
status ← Unknown
i ← 0
while status = Unknown do

if P is not empty then
C ← pop a chosen clause from P and simplify it
if C is an empty clause then

status ← Unsatisfiable
else

A← A ∪ {C}
for (S, p) in streams of inferences between C and D ∈ A do

Concl ← pop and compute the first element of S
P ← P ∪ Concl
Add S to Q with penalty p

i ← i+ 1
P ← P ∪ Probe(Q, i)

else
(status,Concl)← ForceProbe(Q)
P ← P ∪ Concl

return status

Fig. 3: Our modified given clause procedure



10 P. Vukmirović et al.

Consider the TPTP problem NUM800^1, which asks for a function F such
that F c1 c2 ≈ c2 ∧∧∧ F c2 c3 ≈ c6, where cn abbreviates the nth Church numeral,
λs z. sn(z), in which the exponent denotes iterated application. To solve the
problem, it suffices to take F to be the multiplication operator λx y s z. x (y s) z.
However, this unifier is only one out of many available for each occurrence of F .

In an independent evaluation setup on the same set of 2606 problems used
in this paper, Vukmirović et al. compared a complete, nonterminating variant
and a pragmatic, terminating variant of the unification procedure [52, Sect. 7].
The pragmatic variant was used directly—all the inference conclusions were put
immediately in P , bypassing Q. The complete variant, which relies on possibly
infinite streams and is much more prolific, solved only 15 problems less than
the most competitive pragmatic variant. Furthermore, it solved 19 problems not
solved by the pragmatic variant. This shows that our given clause procedure,
with its heuristics, allows the prover to defer exploring less promising branches
of the unification and uses the full power of a complete higher-order unifier search
to solve unification problems that cannot be solved by a crippled procedure.

Among the competing higher-order theorem provers, only Satallax uses infi-
nitely branching calculus rules. It maintains a queue of commands that contain
instructions on how to create a successor state in the tableaux. One of the com-
mands describes infinite enumeration of all closed terms of a given function type.
Each execution of this command makes progress in the enumeration. Unlike eva-
luation of streams representing elements of CSU, each execution of a command
is guaranteed to make progress in enumerating the next closed functional term,
so there is no need to ever return ∅.

6 Controlling Prolific Rules

To support higher-order features such as function extensionality and quantifica-
tion over functions, many refutationally complete calculi employ highly prolific
rules. For example, λ-superposition uses a rule FluidSup [5] that almost always
applies to two clauses if one of them contains a term of the form F sn, where
n > 0. We describe three mechanisms to keep rules like these under control.

First, we limit applicability of the prolific rules. In practice, it often suffices to
apply prolific higher-order rules only to initial or shallow clauses—clauses with
a shallow derivation depth. Thus, we added an option to forbid the application
of a rule if the derivation depth of any premise exceeds a limit.

Second, we penalize the streams of expensive inferences. The penalty of each
stream is given an initial value based on characteristics of the inference premises
such as their derivation depth. For prolific rules such as FluidSup, we increment
this value by a parameter p. Penalties for less prolific variants of this rule, such
as DupSup [5], are increased by fraction of p (e.g., bp/3c).

Third, we defer the selection of prolific clauses. To select the given clause,
most saturating provers evaluate clauses according to some criteria and select
the clause with the lowest evaluation. For this choice to be efficient, passive clau-
ses are organized into a priority queue ordered by their evaluations. Like E [40],



Making Higher-Order Superposition Work 11

base BAVN PL PSAV PHOS BNF PDAV

1638 1640 1637 1637 1632 1594 1520

Fig. 4: Effect of the priority function on the performance

base p = 16 p = 8 p = 4 p = 2 p = 1

1638 1619 1621 1618 1612 1610

Fig. 5: Effect of the FluidSup penalty on the performance

Zipperposition maintains multiple queues, ordered by different evaluations, that
are visited in a round-robin fashion. It also uses E’s two-layer evaluation functi-
ons, a variant of which has recently been implemented in Vampire [20]. The two
layers are clause priority and clause weight. Clauses with higher priority are
preferred, and the weight is used for tie-breaking. Intuitively, the first layer cru-
dely separates clauses into priority classes, whereas the second one uses heuristic
weights to prefer clauses within a class. To control the selection of prolific clau-
ses, we introduce new clause priority functions that take into account features
specific to higher-order clauses.

The first new priority function PreferHOSteps (PHOS) assigns a higher prio-
rity if rules specific to λ- or combinatory superposition were used in the clause
derivation. Since most of the other clause priority functions tend to defer higher-
order clauses, having a clause queue that prefers the results of higher-order in-
ferences might be necessary to find a proof more efficiently. A simpler function
that tries to discover clauses with higher-order properties is PreferLambda (PL),
which prefers clauses that contain λ-abstractions.

We also introduce the priority function ByNormalizationFactor (BNF), in-
spired by the observation that a higher-order inference that applies a compli-
cated substitution to a clause is usually followed by a βη-normalization step. If
βη-normalization greatly reduces the size of a clause, it is likely that this sub-
stitution simplifies the clause (e.g., by removing a variable’s arguments). Thus,
this function prefers clauses that were produced by βη-normalization, and among
those it prefers the ones with larger size reductions.

Another new priority function is PreferShallowAppVars (PSAV). This prefers
clauses with lower depths of the deepest occurrence of an applied variable—that
is, C[X a] is preferred over C[f (X a)]. This function tries to curb the explosion
of both λ- and combinatory superposition: Applying a substitution to a top-level
applied variable often reduces this applied variable to a term with a constant
head, which likely results in a less explosive clause. Among the functions that rely
on properties of applied variables we implemented PreferDeepAppVars (PDAV),
which returns the priority opposite of PSAV, and ByAppVarNum (BAVN), which
prefers clauses with fewer occurrences of applied variables.



12 P. Vukmirović et al.

Evaluation and Discussion. In the base configuration, Zipperposition visits
several clause queues, one of which uses the constant priority function. To eva-
luate the new priority functions, we replaced the queue ordered by the constant
priority with the queue ordered by one of the new functions, leaving the clause
weight intact. The results are shown in Figure 4. It shows that the expensive
priority functions PHOS and BNF, which require inspecting the proof of clauses,
hardly help. Simple functions such as PL are more effective: Compared with base,
PL loses one solution overall but solves 22 new problems.

FluidSup is disabled in base because it is so explosive. To test if different
inference stream queue priorities make a difference on the success rate, we ena-
bled FluidSup and used different penalty increments p for FluidSup inference
queues. The results are shown in Figure 5. As expected, giving a low penalty
to FluidSup is detrimental to performance. However, as the column for p = 16
shows, we should not give too high a penalty increase either, since that delays
useful FluidSup inferences. Interestingly, even though the configuration with
p = 1 solves the least problems overall, it solves 7 problems not solved by base,
which is more than any other configuration we tried.

7 Controlling the Use of Backends

Cooperation with efficient first-order theorem provers is an essential feature of
higher-order theorem provers such as Leo-III [42, Sect. 4.4], Satallax [12], and
Sledgehammer [11]. Those provers invoke first-order backends repeatedly during
a proof attempt and spend a substantial amount of time in backend collabo-
ration. Since λ-superposition generalizes a highly efficient first-order calculus,
we expect that future efficient λ-superposition implementations will not benefit
much from backends. Experimental provers such as Zipperposition can still gain
a lot. We present some techniques for controlling the use of backends.

In his thesis [42, Sect. 6.1], Steen extensively evaluates the effects of using dif-
ferent first-order backends on the performance of Leo-III. His results suggest that
adding only one backend already substantially improves the performance. To re-
duce the effort induced by integrating multiple backends, we chose Ehoh [53] as
our single backend. Ehoh is an extension of the highly optimized superposition
prover E [40] with support for higher-order features such as partial application,
applied variables, and interpreted Booleans. Ehoh provides the efficiency of E
while easing the translation from full higher-order logic: The only missing syn-
tactic feature is λ-abstraction. On the other hand, Ehoh’s higher-order reasoning
capabilities are limited. Its unification algorithm is essentially first-order and it
cannot synthesize λ-abstractions or instantiate predicate variables.

In a departure from Leo-III and other cooperative provers, instead of re-
gularly invoking the backend, we invoke it at most once during a run of the
prover. This makes sense because most competitive higher-order provers use a
portfolio mode in which many configurations are run for a short time, and we
want to leave enough time for native higher-order reasoning. Moreover, multiple
backends invocations tend to be wasteful, because each invocation starts with
no knowledge of the previous ones. Maybe this could be addressed in the future.



Making Higher-Order Superposition Work 13

base p = 0.1 p = 0.25 p = 0.5 p = 0.75

1638 1936 1935 1934 1923

Fig. 6: Effect of the backend invocation point

base lifting SKBCI omitted

1638 1935 1867 1855

Fig. 7: Effect of λ-abstraction
translation method

base n = 16 n = 32 n = 64 n = 128 n = 256 n = 512

1638 1936 1935 1939 1928 1925 1912

Fig. 8: Effect of the size n of Mho

Only a subset of the available clauses are translated and sent to Ehoh. The
choice of clauses is crucial. Let I be the set of clauses representing the input
problem. Let M denote the union of the current active and passive sets. Let
Mho denote the subset of M that contains only clauses that were derived using
at least one λ-superposition-specific inference rule. We order the clauses in Mho

by increasing derivation depth, using syntactic weight to break ties. Then, we
choose all clauses in I and the first n clauses from Mho for use with the backend
reasoner. From all derived clauses in M , we include only the clauses from Mho

because clauses derived using first-order rules can also be derived by Ehoh if
necessary. We also expect large clauses with deep derivations to be less useful.

The remaining step is the translation of λ-abstractions. We support two
translation methods: λ-lifting [25] and Curry’s SKBCI combinator translation
[50]. For SKBCI, we exclude the combinator definition axioms, because they are
very explosive [10]. A third mode simply omits clauses containing λ-abstractions.

Evaluation and Discussion. In Zipperposition, we can adjust the CPU time
allotted to Ehoh, Ehoh’s own proof search parameters, the point when Ehoh is
invoked, number of selected clauses from Mho (denoted n), and the λ translation
method. We fix the time limit to 5 s and use Ehoh in auto mode, and focus on
the last three parameters. In base, collaboration with Ehoh is disabled.

Ehoh is invoked after p · t CPU seconds, where 0 ≤ p < 1 and t is the total
CPU time allotted to Zipperposition. Figure 6 shows the effect of varying p
when n = 32 and λ-lifting is used. The evaluation confirms that using a highly
optimized backend such as Ehoh greatly improves the performance of a less
optimized prover such as Zipperposition. The figure indicates that it is preferable
to invoke the backend early. We have indeed observed that if the backend is
invoked late, small clauses with deep derivations tend to be present by then.
These clauses might have been used to delete important shallow clauses already.
But due to their derivation depth, they will not be translated. In such situations,
it is better to invoke the backend before the important clauses are deleted.



14 P. Vukmirović et al.

Uncoop Coop

CVC4 1810 –

Leo-III 1641 2108

Satallax 2089 2224

Vampire 2096 –

Zipperposition 2223 2307

Fig. 9: Comparison with other competing higher-order theorem provers

Figure 7 quantifies the effects of the three λ-abstraction translation methods.
We fixed p = 0.25 and n = 32. The clear winner is λ-lifting. Omitting clauses
with λ-abstractions performs comparably to SKBCI combinators.

Figure 8 reveals how the parameter n affects performance, with p = 0.25 and
λ-lifting. We find that including a small number of higher-order clauses with the
lowest weight performs better than including a large number of such clauses.

8 Comparison with Other Provers

Raw evaluation data of the previous experiments shows that different choices of
parameters lead to noticeably different sets of solved problems. In an attempt to
use Zipperposition 2 to its full potential, we have created a portfolio mode that
runs up to 50 configurations in parallel during the allotted time. To provide some
context, we compare Zipperposition 2 with the latest versions of all higher-order
provers that competed at CASC-J10: CVC4 1.8 [4], Leo-III 1.5 [44], Satallax
3.5 [12], and Vampire 4.5 [10]. Note that Vampire’s higher-order schedule is
optimized for running on a single core.

We use the same 2606 monomorphic higher-order TPTP 7.2.0 problems as
elsewhere in this paper, but we try to replicate the CASC setup more faithfully.
CASC-J10 was run on 8-core CPUs with a 120 s wall-clock limit and a 960 s
CPU limit. Since we run the experiments on 4-core CPUs, we set the wall-clock
limit to 240 s and keep the same CPU limit. Leo-III, Satallax, and Zipperposition
are cooperative provers. We also run them in uncooperative mode, without their
backends, to measure their intrinsic strength. Figure 9 summarizes the results.

Among the cooperative provers, Zipperposition is the one that depends the
least on its backend, and its uncooperative mode is only one problem behind
Satallax with a backend. This confirms our hypothesis that λ-superposition is a
suitable basis for automatic higher-order reasoning. The increase in performance
due to the addition of an efficient backend suggests that the implementation of
this calculus in a modern first-order superposition prover such as E or Vampire
would achieve markedly better results. Moreover, we believe that there are still
techniques inspired by tableaux, SAT solving, and SMT solving that could be
adapted and integrated in saturation provers.



Making Higher-Order Superposition Work 15

9 Discussion and Conclusion

Back in 1994, Kohlhase [28, Sect. 1.3] was optimistic about the future of higher-
order automated reasoning:

The obstacles to proof search intrinsic to higher-order logic may well be
compensated by the greater expressive power of higher-order logic and
by the existence of shorter proofs. Thus higher-order automated theorem
proving will be practically as feasible as first-order theorem proving is
now as soon as the technological backlog is made up.

For higher-order superposition, the backlog consisted of designing calculus ex-
tensions, heuristics, and algorithms that mitigate its weaknesses. In this paper,
we presented such enhancements, justified their design, and evaluated them. We
explained how each weak point in the higher-order proving pipeline could be
improved, from preprocessing to reasoning with formulas, to delaying unpromi-
sing or explosive inferences, to invoking a backend. Our evaluation indicates that
higher-order superposition is now the state of the art in higher-order reasoning.

Higher-order extensions of first-order superposition have been considered by
Bentkamp et al. [5, 7] and Bhayat and Reger [9, 10]. They introduced proof cal-
culi, proved them refutationally complete, and suggested optional rules, but they
hardly discussed the practical aspects of higher-order superposition. Extensions
of SMT are discussed by Barbosa et al. [3]. Bachmair and Ganzinger [1], Manna
and Waldinger [30], and Murray [32] have studied non-clausal resolution calculi.

In contrast, there is a vast literature on practical aspects of first-order rea-
soning using superposition and related calculi. The literature evaluates various
procedures and techniques [22,38], literal and term order selection functions [21],
and clause evaluation functions [20,41], among others. Our work joins the select
club of papers devoted to practical aspects of higher-order reasoning [8,17,43,55].

As a next step, we plan to implement the described techniques in Ehoh [53],
the λ-free higher-order extension of E. We expect the resulting prover to be sub-
stantially more efficient than Zipperposition. Moreover, we want to investigate
the proofs found by provers such as CVC4 and Satallax but missed by Zipper-
position. Finding the reason behind why Zipperposition fails to solve specific
problems will likely result in useful new techniques.

Acknowledgment. We are grateful to the maintainers of StarExec for letting us use
their service. Ahmed Bhayat and Giles Reger guided us through details of Vampire 4.5.
Ahmed Bhayat, Michael Färber, Mathias Fleury, Predrag Janičić, Mark Summerfield
and anonymous reviewers suggested content, textual, and typesetting improvements.
We thank them all.

Vukmirović, Bentkamp, and Blanchette’s research has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 rese-
arch and innovation program (grant agreement No. 713999, Matryoshka). Blanchette
and Nummelin’s research has received funding from the Netherlands Organization for
Scientific Research (NWO) under the Vidi program (project No. 016.Vidi.189.037, Lean
Forward) and the Incidental Financial Support scheme.



16 P. Vukmirović et al.

References

1. Bachmair, L., Ganzinger, H.: Non-clausal resolution and superposition with se-
lection and redundancy criteria. In: LPAR. Lecture Notes in Computer Science,
vol. 624, pp. 273–284. Springer (1992)

2. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J.
Autom. Reason. 47(4), 451–479 (2011)

3. Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extending
SMT solvers to higher-order logic. In: CADE-27. LNCS, vol. 11716, pp. 35–54.
Springer (2019)

4. Barrett, C.W., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV 2011. LNCS, vol. 6806, pp. 171–177.
Springer (2011)

5. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Super-
position with lambdas. J. Autom. Reason. To appear, preprint at https://arxiv.
org/abs/2102.00453 (2021)

6. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P.: Superposition for
full higher-order logic https://matryoshka-project.github.io/pubs/hosup paper.
pdf, submitted to CADE-28

7. Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for
lambda-free higher-order logic. In: IJCAR 2018. LNCS, vol. 10900, pp. 28–46.
Springer (2018)

8. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Can a higher-order and a first-
order theorem prover cooperate? In: Baader, F., Voronkov, A. (eds.) LPAR 2004.
LNCS, vol. 3452, pp. 415–431. Springer (2004)

9. Bhayat, A., Reger, G.: Restricted combinatory unification. In: CADE-27. LNCS,
vol. 11716, pp. 74–93. Springer (2019)

10. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order
logic. In: IJCAR 2020, Part I. LNCS, vol. 12166, pp. 278–296. Springer (2020)

11. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: IJCAR 2010. LNCS,
vol. 6173, pp. 107–121. Springer (2010)

12. Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT pro-
blems. J. Autom. Reason. 51(1), 57–77 (2013)

13. Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural In-
duction, and Beyond. Ph.D. thesis, École polytechnique (2015)

14. Czajka, L., Kaliszyk, C.: Hammer for Coq: Automation for dependent type theory.
J. Autom. Reason. 61(1-4), 423–453 (2018)

15. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT - A distributed and learning
equational prover. J. Autom. Reason. 18(2), 189–198 (1997)

16. Ebner, G., Blanchette, J., Tourret, S.: Unifying splitting. In: Sutcliffe, G., Platzer,
A. (eds.) CADE 2021, To Appear (2021)

17. Färber, M., Brown, C.E.: Internal guidance for Satallax. In: Olivetti, N., Tiwari,
A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 349–361. Springer (2016)

18. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: ESOP 2013.
LNCS, vol. 7792, pp. 125–128. Springer (2013)

19. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed
clause normal form transformation. In: CADE-19. LNCS, vol. 2741, pp. 335–349.
Springer (2003)

20. Gleiss, B., Suda, M.: Layered clause selection for theory reasoning - (short paper).
In: IJCAR 2020, Part I. LNCS, vol. 12166, pp. 402–409. Springer (2020)

https://arxiv.org/abs/2102.00453
https://arxiv.org/abs/2102.00453
https://matryoshka-project.github.io/pubs/hosup_paper.pdf
https://matryoshka-project.github.io/pubs/hosup_paper.pdf


Making Higher-Order Superposition Work 17

21. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: IJCAR
2016. LNCS, vol. 9706, pp. 313–329. Springer (2016)

22. Hoder, K., Voronkov, A.: Comparing unification algorithms in first-order theorem
proving. In: KI 2009. LNCS, vol. 5803, pp. 435–443. Springer (2009)

23. Huet, G.P.: A unification algorithm for typed lambda-calculus. Theor. Comput.
Sci. 1(1), 27–57 (1975)

24. Jensen, D.C., Pietrzykowski, T.: Mechanizing omega-order type theory through
unification. Theor. Comput. Sci. 3(2), 123–171 (1976)

25. Johnsson, T.: Lambda lifting: Treansforming programs to recursive equations. In:
FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer (1985)

26. Kaliszyk, C., Urban, J.: Hol(y)hammer: Online ATP service for HOL light. Math.
Comput. Sci. 9(1), 5–22 (2015)

27. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263 – 297. Pergamon
(1970)

28. Kohlhase, M.: A mechanization of sorted higher-order logic based on the resolution
principle. Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany (1994)

29. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: CAV 2013.
LNCS, vol. 8044, pp. 1–35. Springer (2013)

30. Manna, Z., Waldinger, R.: A deductive approach to program synthesis. In: IJCAI.
pp. 542–551. William Kaufmann (1979)

31. McCune, W., Wos, L.: Otter—the CADE-13 competition incarnations. J. Autom.
Reason. 18(2), 211–220 (1997)

32. Murray, N.V.: Completely non-clausal theorem proving. Artif. Intell. 18(1), 67–85
(1982)

33. Nipkow, T.: Functional unification of higher-order patterns. In: Best, E. (ed.) LICS
1993. pp. 64–74. IEEE Computer Society (1993)

34. Nipkow, T.: Functional unification of higher-order patterns. In: LICS 1993. pp.
64–74. IEEE Computer Society (1993)

35. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 335–367.
Elsevier and MIT Press (2001)

36. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
37. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a

practical link between automatic and interactive theorem provers. In: IWIL-2010.
EPiC Series in Computing, vol. 2, pp. 1–11. EasyChair (2010)

38. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: CADE-25. LNCS,
vol. 9195, pp. 399–415. Springer (2015)

39. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2-3), 111–126 (2002)
40. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,

P. (ed.) CADE-27. LNCS, vol. 11716, pp. 495–507. Springer (2019)
41. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-

based theorem proving. In: IJCAR 2016. LNCS, vol. 9706, pp. 330–345. Springer
(2016)

42. Steen, A.: Extensional paramodulation for higher-order logic and its effective im-
plementation Leo-III. Ph.D. thesis, Free University of Berlin, Dahlem, Germany
(2018)

43. Steen, A., Benzmüller, C.: There is no best β-normalization strategy for higher-
order reasoners. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-
20. LNCS, vol. 9450, pp. 329–339. Springer (2015)



18 P. Vukmirović et al.

44. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: IJCAR 2018. LNCS,
vol. 10900, pp. 108–116. Springer (2018)

45. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure
for logic solving. In: IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer (2014)

46. Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledge-
hammer test bench. J. Appl. Log. 11(1), 91–102 (2013)

47. Sutcliffe, G.: The CADE ATP System Competition - CASC. AI Magazine 37(2),
99–101 (2016)

48. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

49. Sutcliffe, G.: The CADE-27 automated theorem proving system competition—
CASC-27. AI Commun. 32(5-6), 373–389 (2019)

50. Turner, D.A.: Another algorithm for bracket abstraction. J. Symb. Log. 44(2),
267–270 (1979)

51. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: CAV
2014. LNCS, vol. 8559, pp. 696–710. Springer (2014)

52. Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unifica-
tion. In: FSCD. LIPIcs, vol. 167, pp. 5:1–5:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020)

53. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending a brainiac
prover to lambda-free higher-order logic. In: TACAS 2019, Part I. LNCS, vol.
11427, pp. 192–210. Springer (2019)

54. Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-order superposition
prover. In: Fontaine, P., Korovin, K., Kotsireas, I.S., Rümmer, P., Tourret, S. (eds.)
PAAR-2020. CEUR Workshop Proceedings, vol. 2752, pp. 148–166. CEUR-WS.org
(2020)

55. Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization
techniques for HOL. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS,
vol. 9706, pp. 362–370. Springer (2016)


	Making Higher-Order Superposition Work
	1 Introduction
	2 Background and Setting
	3 Preprocessing Higher-Order Problems
	4 Reasoning with Formulas
	5 Enumerating Infinitely Branching Inferences
	6 Controlling Prolific Rules
	7 Controlling the Use of Backends
	8 Comparison with Other Provers
	9 Discussion and Conclusion


